

Loknete Dr. Balasaheb Vikhe Patil (Padma Bhushan Awardee) Pravara Rural Education Society Arts, Science & Commerce College Kolhar

> Organic Chemistry Class- T.Y.B.Sc.

#### Nucleophilic Substitution Reactions : The SN1 and SN2 Mechanisms

Miss. Gaikwad Rani J. Asst. Professor Dept. of Chemistry A. S. C College, Kolhar

### **Nucleophiles**

- Usually S<sub>N</sub>1 reactions are run in polar protic solvents; compounds with O-H groups.
- The polar protic solvent acts as **BOTH** nucleophile as well as the solvent.
- Common solvent/nucleophiles include: water, ethanol, methanol, acetic acid, and formic acid.



#### A protic solvent acts as both a solvent and nucleophile in S<sub>N</sub>1 reactions solvolysis:



### **Typical solvolysis reaction**



### Leaving groups

• Leaving groups are the same as in  $S_N^2$  reactions:

• CI, Br, I, OTs are the usual ones.



# S<sub>N</sub>1 Reaction: solvent polarity

- S<sub>N</sub>1 solvolysis reactions go much faster in trifluoroacetic acid and water (high ionizing power).
- S<sub>N</sub>1 solvolysis reactions go slower in ethanol and acetic acid (lower ionizing power).

• See table 10-9.

### S<sub>N</sub>2 versus S<sub>N</sub>1 Reactions

- A primary alkyl halide or a methyl halide should react by an S<sub>N</sub>2 process. Look for a good nucleophile, such as hydroxide, methoxide, etc. in an polar *aprotic* solvent.
- A *tertiary* alkyl halide should react by an S<sub>N</sub>1 mechanism. Make sure to run the reaction under *solvolysis* (polar protic solvent) conditions! Don't use strong base conditions -- it will give you nothing but E2 elimination!
- A secondary alkyl halide can go by either mechanism. Look at the solvent/nucleophile conditions!!

### S<sub>N</sub>2 versus S<sub>N</sub>1 Reactions (continued)

- If the reaction medium is KI or Nal in acetone, this *demands* an S<sub>N</sub>2 mechanism.
- If the reaction medium is AgNO<sub>3</sub> in ethanol, this *demands* an S<sub>N</sub>1 mechanism.
- If the medium is basic, look for  $S_N 2$ .
- If the medium is acidic or neutral, expect  $S_N 1$ .

### classification tests

 Sodium iodide and potassium iodide in acetone are typical S<sub>N</sub>2 reagents!!

 Silver nitrate in ethanol is a typical S<sub>N</sub>1 reagent!!



### **Neopentyl Transition State**



# Allylic and Benzylic compounds

Allylic and benzylic compounds are especially reactive in  $S_N 1$  reactions.

Even though they are primary substrates, they are more reactive most other halides! They form resonance stabilized carbocations.



CH<sub>2</sub>=CH-CH<sub>2</sub>-Br

#### benzyl bromide

allyl bromide

### Solvolysis Rates: S<sub>N</sub>1

|                     | k <sub>rel</sub> |  |
|---------------------|------------------|--|
| Ethyl chloride      | very small       |  |
| Isopropyl chloride  | 1                |  |
| Allyl chloride      | 74               |  |
| Benzyl chloride     | 140              |  |
| tert-Butyl chloride | 12,000           |  |

**80% Ethanol-water at 50°** 

# Allylic and Benzylic compounds

Allylic and benzylic compounds are especially reactive in  $S_N 2$  reactions.

They are more reactive than typical primary compounds!



 $CH_2=CH-CH_2-Br$ 

benzyl bromide

allyl bromide

### Reaction with KI in Acetone: S<sub>N</sub>2

|                 | <i>k</i> <sub>rel</sub> |
|-----------------|-------------------------|
| Ethyl chloride  | 1                       |
| Allyl chloride  | 33                      |
| Methyl chloride | 93                      |
| Benzyl chloride | 93                      |
| -               |                         |

60° C



### Vinyl and Phenyl Compounds

### Vinyl and Phenyl compounds are completely inert in both S<sub>N</sub>1 and S<sub>N</sub>2 reactions!!





### **Reactivity order for S<sub>N</sub>1**



No reaction

### **Reactivity order for S<sub>N</sub>2**

#### About same reactivity



### **Cyclic Systems**

- Cyclopropyl and cyclobutyl halides are very unreactive in both  $S_N 1$  and  $S_N 2$  reactions

• Cyclopentyl halides are more reactive than cyclohexyl halides in  $S_N 1$  and  $S_N 2$  reactions.

### **Bicyclic systems: Bredt's Rule**

You can't have *p* orbitals on a bridgehead position in a rigid bicyclic molecule.

-- You cannot form a carbocation at a bridgehead position.



--You cannot have a double bond at a bridgehead position.









A Closer Look...



## ÇΗ<sub>3</sub> (+) $CH_3 - CH - CH_3$ $CH_3$







## CH<sub>3</sub> I ⊕ $-CH-CH_3$ $CH_3 - C -$ CH<sub>3</sub>

## CH<sub>3</sub> I⊕ $-CH-CH_3$ $CH_3 - C -$ CH<sub>3</sub>

## CH<sub>3</sub> I€ $-CH-CH_3$ $CH_3 - C_3$ CH<sub>3</sub>

## CH<sub>3</sub> (+) $CH_3 - C - CH - CH_3$ $CH_3$

### Competing Reactions: Elimination

- Lower temperatures favor substitution; higher temperatures give more elimination.
- Highly branched compounds (secondary and tertiary compounds) give mostly elimination with strong bases. Weaker bases give more substitution. A basic medium favors E2; a more nucleophilic medium favors S<sub>N</sub>2.
- Primary compounds give mostly substitution with non-bulky nucleophiles. A bulky base (tert-butoxide) gives elimination.
- Tertiary compounds should be reacted under solvolysis conditions to give substitution!!!





### **Under S<sub>N</sub>2 Conditions**



Inversion of configuration



### Internal S<sub>N</sub>2 reaction followed by an external S<sub>N</sub>2 reaction



### Neighboring Group Participation





### Neighboring group participation: Summary

- Retention of configuration
- Enhanced rate of reaction



### **Mustard gas**

 Mustard gas is a substance that causes tissue blistering (a vesicant). It is highly reactive compound that combines with proteins and DNA and results in cellular changes immediately after exposure. Mustard gas was used as a chemical warfare agent in World War I by both sides.



### Ion-pair mechanisms

- S<sub>N</sub>1 reactions are "expected" to give a 50-50 (racemic) mixture of the two enantiomers!!
- But, if the leaving group doesn't get out of the way, you will get more inversion than retention, which makes it "look like" S<sub>N</sub>2.
- In the extreme, you could have a carbocation give only inversion of configuration by an S<sub>N</sub>1 mechanism!!

### **In-Class Problem**

For the following reaction,

 $CH_3$ -CH=CH- $CH_2$ -OTs



- A) Identify the mechanism of this reaction.
- B) Predict the product(s) of this reaction, and identify them as *major* or *minor*, if appropriate.



#### **Substitution** versus Elimination

|                           | S <sub>N</sub> 1                                                     | S <sub>N</sub> 2                                                       | E1                                                                   | E2                                                                                   |
|---------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Substrate                 | Strong effect; reaction<br>favored by tertiary<br>halide             | Strong effect; reaction favored by methyl or primary halide            | Strong effect; reaction<br>favored by tertiary<br>halide             | Strong effect; reaction<br>favored by tertiary<br>halide                             |
| Reactivity – primary      | Does not occur                                                       | Highly favored                                                         | Does not occur                                                       | Occurs with strong base!                                                             |
| Reactivity – tertiary     | Favored when<br>nucleophile is the<br>solvent – solvolysis           | Does not occur                                                         | Occurs under<br>solvolysis conditions<br>or with strong acids        | Highly favored when<br>strong bases (OH <sup>-</sup> ,<br>OR <sup>-</sup> ) are used |
| Reactivity –<br>secondary | Can occur in polar, protic solvents                                  | Favored by good<br>nucleophile in polar,<br>aprotic solvents           | Can occur in polar, protic solvents                                  | Favored when strong bases are used                                                   |
| Solvent                   | Very strong effect;<br>reaction favored by<br>polar, protic solvents | Strong effect;<br>reaction favored by<br>polar, aprotic solvents       | Very strong effect;<br>reaction favored by<br>polar, protic solvents | Strong effect; reaction<br>favored by polar,<br>aprotic solvent                      |
| Nucleophile/Base          | Weak effect; reaction<br>favored by good<br>nucleophile/weak<br>base | Strong effect; reaction<br>favored by good<br>nucleophile/weak<br>base | Weak effect; reaction favored by weak base                           | Strong effect; reaction<br>favored by strong<br>base                                 |
| Leaving Group             | Strong effect; reaction<br>favored by good<br>leaving group          | Strong effect; reaction<br>favored by good<br>leaving group            | Strong effect; reaction<br>favored by good<br>leaving group          | Strong effect; reaction<br>favored by good<br>leaving group                          |