

Loknete Dr. Balasaheb Vikhe Patil (Padma Bhushan Awardee) Pravara Rural Education Society Arts, Science & Commerce College Kolhar

Organic Chemistry

Class- T.Y.B.Sc.

Nucleophilic Substitution Reactions : The $\rm S_{\rm N}1$ and $\rm S_{\rm N}2$ Mechanisms

Miss. Gaikwad Rani J.

Asst. Professor Dept. of Chemistry A. S. C College, Kolhar

$S_{\ensuremath{\mathsf{N}}\xspace}^2$ Reaction: Leaving Groups

- Best leaving groups leave to form *weak* Lewis bases.
- Good leaving groups:
 - Br, I, Cl, OTs, OH₂⁺
- "Lousy" leaving groups:
 - OH, OR, NH_{2,}, F

$S_N 2$ Reaction: solvents

S_N2 reactions are *accelerated* in polar, aprotic solvents. Consider Na^{+ -}OEt as an example of a nucleophile.

Why are reactions accelerated? The Na⁺ cation is complexed by the negative part of the aprotic solvent molecule pulling it away from ⁻OEt.

Now that the sodium ion is complexed, the oxygen in the nucleophile ⁻OEt is more available for attack.

$S_N 1$ Mechanism

- reaction and mechanism
- kinetics
- stereochemistry
- substrate structure
- nucleophiles
- leaving groups
- solvents

$S_N 1$ Reaction: kinetics

•The reactions follows first order (unimolecular) kinetics

$S_N 1$ Reaction: stereochemistry

With chiral R-X compounds, the product will be racemic (50% of each enantiomer).

$S_N 1$ Reaction: substrate structure

tertiary>secondary>primary > methyl

Primary and methyl halides are very unreactive! They don't go by $S_N 1$ reactions.