

Loknete Dr. Balasaheb Vikhe Patil (Padma Bhushan Awardee) Pravara Rural Education Society Arts, Science & Commerce College Kolhar

Organic Chemistry

Class- T.Y.B.Sc. Nucleophilic Substitution Reactions : The S_N^1 and S_N^2 Mechanisms

Miss. Gaikwad Rani J.

Asst. Professor Dept. of Chemistry A. S. C College, Kolhar

More common and IUPAC names

sec-butyl chloride (2-chlorobutane) isobutyl chloride *tert*-butyl chloride allyl chloride vinyl chloride

isopropyl chloride (2-chloropropane) (1-chloro-2-methylpropane) (2-chloro-2-methylpropane) (3-chloro-1-propene) (chloroethene)

benzyl chloride phenyl chloride (chloromethylbenzene) (chlorobenzene)

Nucleophilic substitution

- The substitution reaction: $S_N 1$ and $S_N 2$
- Primary halides = $S_N 2$
- Secondary halides = both mechanisms!
- Tertiary halides = $S_N 1$
- Leaving groups: halogens most common
- There are a number of different nucleophiles!!

$S_N 2$ Mechanism

- reaction and mechanism
- kinetics
- stereochemistry
- substrate structure
- nucleophiles
- leaving groups
- solvents

S_N2 Mechanism: kinetics

 The reactions follows second order (bimolecular) kinetics

For an $S_N 2$ Reaction:

EVERY REACTION EVENT ALWAYS LEADS TO INVERSION OF CONFIGURATION

Chloromethane + lodide as the Nucleophile

tert-Butyl Chloride + Iodide as the Nucleophile

